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Abstract

The ability of the US Environmental Protection Agency’s Community Multi-scale Air Quality (CMAQ) model to

simulate the wet deposition of ammonium during 8-week winter and summer periods in 2001 is evaluated using

observations from the National Acid Deposition Program (NADP) monitoring sites. The objective of this study is to

ascertain the effects of precipitation simulations and emissions on CMAQ simulations of deposition. In both seasons,

CMAQ tends to underpredict the deposition amounts. Based on the co-located measurements of ammonium wet

deposition and precipitation at the NADP sites and on estimated precipitation amounts for each grid cell, Bayesian

statistical methods are used to estimate ammonium wet deposition over all grid cells in the study region. To assess the

effect of precipitation on the CMAQ simulations, our statistical method is run twice for each time period, using the

simulated precipitation information provided to CMAQ and precipitation estimates based on data collected by the

cooperative observer network. During the winter period when stratiform-type precipitation dominates, precipitation

amounts do not seem to be a major factor in CMAQ’s ability to simulate the wet deposition of ammonium. However,

during the summer period when precipitation is mainly generated by convective processes, small portions of the region are

identified in which problems with precipitation simulations may be adversely affecting CMAQ’s estimates.
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1. Introduction

An important aspect in the development and
maturation of an air-quality prediction model is the
evaluation of the model’s ability to predict fields of
interest to the air-quality community. This paper
focuses on the ability of the US Environmental
Protection Agency’s Community Multi-scale Air
Quality (CMAQ) model to predict the wet deposi-
tion of ammonium. A complete description of the
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Fig. 1. CMAQ wet deposition of ammonium versus observed wet

deposition of ammonium.
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Fig. 2. CMAQ wet deposition of ammonium versus MM5-

simulated precipitation.
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CMAQ model can be found in Byun and Schere
(2006). Two critical elements in this analysis are the
precipitation forecasts produced for CMAQ by
MM5, a mesoscale meteorological model (Grell
et al., 1994; Dudhia et al., 1998), and ammonia
emissions. Our objective is to examine the effects of
precipitation on the CMAQ simulation of the wet
deposition of ammonium. Section 8.2 of Byun and
Schere (2006) describes how CMAQ treats wet
deposition. There is abundant observed precipita-
tion data with which to judge the MM5 precipita-
tion fields (see the data section). It should be noted
that the current implementation of CMAQ does not
include scavenging or wet deposition by snow or ice.
This would contribute to model uncertainties during
the winter season.

The wet deposition of ammonium is an important
component of the total mass budget of ammonia/
ammonium. Ammonium wet deposition has a
detrimental impact on terrestrial and aquatic
ecosystems. This is especially true for water quality.
For instance, Sheeder et al. (2002) found that nitrate
and ammonium were major factors in the decline of
water quality in the Chesapeake Bay.

Ammonia emissions are an important factor in
understanding and modeling the wet deposition of
ammonium. A careful examination of the ammonia
emissions data has been made by Gilliland et al.
(2003) and Gilliland et al. (2005). Because the main
sources of ammonia emissions are fertilizer applica-
tion and animal husbandry, there is significant
uncertainty in the seasonal distribution of the
emissions. These two papers and those by Goebes
et al. (2003) and Pinder et al. (2004) document the
development of an improved ammonia emissions
data set. These ammonia emissions data were used
in our annual 2001 CMAQ simulation run. The
following figures clearly show the problems that
CMAQ has in simulating the wet deposition of
ammonium. The observed data in these figures came
from the NADP monitors. The CMAQ values were
obtained at the NADP locations by kriging the
CMAQ output fields.

Fig. 1 shows the relationship between the CMAQ
simulation of the wet deposition of ammonium and
the observed values. Clearly, CMAQ has under-
predicted the deposition values in both seasons. The
correlation coefficient is particularly low in the
summer. We will examine some potential causes for
this underprediction. Fig. 2 shows the relationship
of the CMAQ deposition simulations to the MM5
precipitation simulations. As one would expect, the
deposition values increase as the precipitation
increases. The correlation coefficients indicate that
the relationship is strong in the summer, but weak in
the winter.

Fig. 3 shows the relationship between MM5
precipitation simulations and the observed precipi-
tation. The correlation coefficient for the winter is
high, while for the summer it is somewhat lower.
The convective nature of summer precipitation
makes it harder for the model to predict, and this
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Fig. 3. MM5-simulated precipitation versus observed precipita-
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likely accounts for the lower correlation value.
Given the relationship shown in Fig. 3 between
MM5-simulated precipitation and the observed
precipitation, it seems likely that the CMAQ wet
deposition simulations using the MM5 precipitation
fields would be comparable to those generated by
using the observed precipitation fields. This issue
will be examined statistically in this paper.

In this paper, we show how advanced statistical
techniques can be used to evaluate the ability of
CMAQ to simulate the wet deposition of ammo-
nium, and to assess the impact of MM5-simulated
precipitation on these simulations. We evaluate the
performance of CMAQ by comparing the simulated
values with the observed values of the wet deposi-
tion of ammonium. Our approach uses Bayesian
statistical methods to explore the nature and the
extent of the spatial correlation structure inherent in
the observed ammonium wet deposition and to
investigate the relationship of observed precipita-
tion and wet deposition. As described by Swall and
Davis (2006), the statistical model can then be used
to estimate the amount of wet deposition at
locations or grid cells for which no monitoring data
are available. Major advantages of this particular
technique include the ability to quantify the
uncertainty inherent in the resulting statistical
estimates due to such sources as measurement error,
uncertainty about the extent of spatial correlation,
and other such stochastic factors. We do not
address the statistical aspects of temporal varia-
bility.

2. Data

The 2001 calendar year CMAQ simulation was
performed on a 36-km horizontal grid using the
Lambert conformal projection with 14 vertical
layers based on a sigma coordinate system. The
simulation used the CB-IV gas-phase chemical
mechanism (Gery et al., 1989). The meteorological
data were generated by MM5. The MM5 output is
processed by the CMAQ Meteorology-Chemistry
Interface Processor (MCIP v2.3) to generate input
fields to the chemical transport model processor.
Emissions data came from the 2001 US Environ-
mental Protection Agency National Emissions
Inventory (NEI) for anthropogenic emissions, and
from BEIS 3.12 for biogenic emissions (Houyoux,
2004: http://www.epa.gov/air/interstateairquality/
pdfs/CAIR_emissions_inventory_overview.pdf).

Our study focuses on an area in the upper
midwestern portion of the US, which ranges from
eastern North Dakota to western West Virginia; it
was selected to encompass a portion of the major
source regions, as well as locations downwind from
these regions. For reference, this area is shown in
Fig. 4. This region of the country is of particular
interest due to concerns about possible discrepan-
cies in emissions inventories, mostly attributed to
uncertainties about agricultural sources.

Our study focuses on two 8-week time periods.
The winter period ranges from 2 January to 27
February 2001, while the summer period includes
the weeks from 5 June to 31 July 2001. The observed
ammonium wet deposition values and precipitation
amounts came from the National Atmospheric
Deposition Program (NADP: http://nadp.sws.uiu-
c.edu) monitoring sites. The NADP data are weekly
aggregated samples running from Tuesday morning
to Tuesday morning. In our region of interest, there
are 50 sparsely distributed NADP sites, a number of
which failed to record observations on a regular
basis. In addition to the US sites, three Canadian
sites which had daily data were also available from
the Canadian National Atmospheric Chemistry
Database and Analysis System (http://www.msc-
smc.ec.gc.ca/natchem/index_e.html).

The observed amounts were averaged over the
two 8-week periods. In the winter, only 18 sites had
a complete set of data, while 17 sites had one

http://www.epa.gov/air/interstateairquality/pdfs/CAIR_emissions_inventory_overview.pdf
http://www.epa.gov/air/interstateairquality/pdfs/CAIR_emissions_inventory_overview.pdf
http://nadp.sws.uiuc.edu
http://nadp.sws.uiuc.edu
http://www.msc-smc.ec.gc.ca/natchem/index_e.html
http://www.msc-smc.ec.gc.ca/natchem/index_e.html
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Fig. 4. The top two panels display average weekly NH4
+ wet deposition measured at NADP sites in (a) winter and (b) summer. For

comparison, the bottom two panels display CMAQ-simulated average weekly NH4
+ wet deposition in (c) winter and (d) summer.
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missing week. The remaining 15 sites had multiple
weeks of missing data. For the averaging process,
we accepted sites that had no more than one missing
week, which yielded 35 stations. For the summer
period, we had 14 sites with no missing data, and 21
sites with 1 week missing. This again yielded 35 US
monitoring sites for use in our analyses. There was
minimal missing data from the Canadian locations.
Thus, for both summer and winter, a total of 38
monitoring locations were available for this study.

Fig. 4a shows the average weekly ammonium wet
deposition amounts observed during the winter
period at the NADP monitoring sites within our
region of interest, while Fig. 4b shows those
available for the summer period. The focus region
for the study is outlined in gray on both figures. As
demonstrated by the figures and mentioned above,
the number of monitoring sites in the vicinity is
limited. For comparison, the CMAQ simulated
ammonium wet deposition fields were summed for
each week, then these weekly deposition amounts
were averaged over each of the two 8-week periods.
Fig. 4c shows the average weekly values simulated
by CMAQ for the winter period, while Fig. 4d
illustrates the summer values.

Since our study examines the impact of precipita-
tion errors in CMAQ’s simulation of ammonium wet
deposition, we now focus on sources of precipitation
information in our chosen region. In addition to the
observed precipitation at the NADP sites, precipita-
tion observations are available from the US Co-
operative Observer Network monitored by the US
National Climatic Data Center (www.ncdc.noaa.-
gov). There are over 1000 cooperative observer sites
in the region that were analyzed, each of which
measures daily maximum and minimum tempera-
tures in addition to the total daily precipitation. The
left panel of Fig. 5 shows the average weekly rainfall
used in this study as recorded by the cooperative
observers in the region during the 8-week winter
timespan, while the right panel shows the amounts
recorded in the summer period.

http://www.ncdc.noaa.gov
http://www.ncdc.noaa.gov
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Fig. 5. Precipitation from cooperative observers in (a) winter and (b) summer.

J.M. Davis, J.L. Swall / Atmospheric Environment 40 (2006) 4562–45734566
These precipitation amounts are recorded point-
wise, with every cooperative observer’s location
noted. However, we would like to compare and
utilize these precipitation amounts with CMAQ and
MM5 simulations, which are obtained on a gridded
basis. We use a smoothing technique to estimate the
amount of precipitation for each grid cell based on
the pointwise data, including both the cooperative
observers’ data and the precipitation recorded at
NADP monitoring sites. Any number of smoothing
techniques could be used to obtain these values, but
we choose to use a simple averaging strategy in
which each grid cell’s precipitation amount is
estimated based on the average of the available
monitoring information within a given spatial
window. Our averaging window consists of a square
region centered at the same point as the grid cell in
question, but with a side length of 72 km (as
compared with the 36 km side length for a grid
cell). Note that this window contains an area equal
to that of four grid cells. This allows for more data
points to be used in the estimation of each grid cell
than if we only considered the monitoring data
within each grid cell. Although the cooperative
observer network is much denser than that of the
NADP, it is still somewhat sparse in certain areas
(e.g., northern Minnesota). As a result, there are
still some areas in gray on these figures which
represent grid cells for which we have no estimate
because there were fewer than two observers or
monitors within the smoothing window. This
includes most portions of the focus region which
fall in Ontario, since the cooperative observer
network is US-based.

The resulting precipitation estimates for the grid
cells in our region in both the winter and summer
periods are given in Fig. 6. For reference, the
average weekly MM5-simulated precipitation
amounts are shown in the bottom panels of the
figure. A comparison of the left panels in Fig. 6
shows that areas of low precipitation (in the
northwestern and southeastern portions of the focus
area) are in agreement during the winter season.
However, the band of high precipitation simulated
by MM5, which stretched through Missouri and
Illinois, is not well established in the observational
data. In the summer period (right panels of Fig. 6),
MM5-simulated precipitation and the estimates
based on cooperative observer data are generally
in agreement, although the extremes simulated by
MM5 are not very well supported by the observa-
tional data. The discrepancies between observed
and simulated precipitation amounts are fairly
small, and would seem to indicate that errors in
precipitation simulations are probably not respon-
sible for discrepancies between observed and
CMAQ-simulated ammonium wet deposition. In
the next section, we propose a statistical model to
help clarify this issue. The paper by Mass et al.
(2002) provides a comprehensive review of the
ability of MM5 to simulate precipitation under a
variety of conditions. Comparisons with radar data
are also included as a part of this work as well as the
effects of horizontal resolution.

3. Methods

Hierarchical Bayesian analysis provides a frame-
work for the direct assessment of the impact of
precipitation on CMAQ simulations of wet deposi-
tion. We now outline the theory behind this
technique. Our data represent two different levels
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Fig. 6. The top two panels display gridded precipitation from cooperative observers in (a) winter and (b) summer. For comparison, the

bottom panels show MM5-simulated precipitation in (c) winter and (d) summer.
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of spatial information: pointwise data observed at
particular monitoring sites vs. ‘‘areal’’ averages
simulated by CMAQ for an entire grid cell. This is
an example of the ‘‘change of support’’ problem, as
described by Gelfand et al. (2001) and Cressie (1993,
Section 5.2). To address this concern, we conduct a
further analysis using the Bayesian hierarchical
modeling strategy described by Swall and Davis
(2006), which was developed based on the work of
Fuentes and Raftery (2005). Working on the basis
of the (pointwise) observed monitoring data, we use
statistical methods to estimate what we would
expect CMAQ to simulate for the focus area. We
can then compare our statistical estimates for each
grid cell with the actual values simulated by CMAQ.

As discussed previously, there is a positive
association between precipitation amounts and
ammonium wet deposition in both the summer
and winter periods. Therefore, CMAQ’s ability to
simulate wet deposition is at least partly dependent
on the quality of information it receives about
precipitation, which comes from MM5 through
MCIP. This also implies that our statistical model
for ammonium wet deposition should include
precipitation as an explanatory variable. In order
to estimate the average weekly wet deposition
amounts for each grid cell over a given time period,
we will need an estimate of the average weekly
amount of precipitation by grid cell over that
period.

We have two possible sources for precipitation
information for grid cells. First, we can access the
precipitation amounts which CMAQ uses in its
simulations; these amounts are simulated by MM5.
Fig. 6c displays these values for the winter time
period, while Fig. 6d provides those for the summer
season. As a second option, we can use the
observations taken by the cooperative observers,
smoothed to obtain estimated precipitation
amounts for the grid cells, as described in the
previous section and displayed in the top panels of
Fig. 6. If the CMAQ simulations of the wet
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deposition of ammonium agree more closely with
the first set of statistical estimates (based on MM5-
simulated precipitation) than with the second set of
estimates (based on observational records), then
errors in precipitation fields may be the culprit
behind inaccuracies in wet deposition simulation.
However, we note that since there are some areas
where monitoring data are very sparse (represented
in gray on the figures), use of these precipitation
estimates will prevent us from making statistical
estimates for wet deposition in these areas.

Our statistical methodology is described in detail
by Swall and Davis (2006), but we summarize the
main features of the approach here. For a given 8-
week period (e.g., summer or winter time period),
we seek to model the average weekly ammonium
wet deposition at a given NADP site (denoted ai)
based on the site’s location (xi, yi), the average
weekly precipitation recorded at the site (pi), and
values observed at all the surrounding sites in
the region. (Note that the actual CMAQ simulation
of ammonium wet deposition does not play a role
in fitting this statistical model.) Even after control-
ling for precipitation, wet deposition amounts
are spatially correlated, and this is accounted
for in the statistical model using spatially corre-
lated errors. In addition, the model also includes
an allowance for measurement error (or other
fine-scale error). We combine these assumptions
to form a Bayesian hierarchical model for obser-
vations from all the sites with the likelihood
given by

a�Nðz; s2IÞ,

where

z�Nðb0 þ b1xþ b2yþ b3xyþ b4p;SÞ

and I is the identity matrix. The terms bj denote
coefficients describing the association between the
location or precipitation for the sites and the
observed responses at the sites. As described by
Swall and Davis (2006), S is a covariance matrix
possessing a specified correlation structure; the
parameters governing this structure are also esti-
mated by the model. As in Swall and Davis (2006),
as well as many other environmental applications,
preliminary analyses of the ammonium wet deposi-
tion data revealed the exponential covariance
structure to be an appropriate choice for the
formation of the covariance matrix.

We use Markov Chain Monte-Carlo (MCMC)
techniques to sample from the posterior distribution
of the statistical parameters; this allows us to assess
the combinations of parameters best explaining the
relationships among the observational data. To
make statistical estimates of the wet deposition of
ammonium for each grid cell, we use these
combinations of parameters, in conjunction with
the locations of the grid cells and the estimates of
average weekly precipitation during the time period
of interest. This process yields corresponding
samples of estimates for each grid cell, from which
we can calculate a posterior mean estimate and a
credible interval for each. More details about the
implementation of the statistical model are provided
in the work of Swall and Davis (2006).

As discussed previously, we have two sources of
precipitation for grid cells: MM5-simulated preci-
pitation and estimates based on smoothed coopera-
tive observer data. We choose to fit the statistical
model twice, once based on each set of precipitation
values. As discussed in the previous section and
shown in Fig. 6, the MM5-simulated precipitation
and the cooperative observer data differ somewhat.
One question is whether CMAQ compares more
favorably with statistical estimates made based on a
particular set of precipitation estimates. For in-
stance, use of an inaccurate precipitation simulation
from MM5 (through MCIP) is one factor that could
explain errors or biases by CMAQ in predicting wet
deposition. If this were a large factor in CMAQ’s
ability to simulate the wet deposition of ammonium,
then the statistical estimates of CMAQ’s error in
predicting wet deposition of ammonia using MM5-
simulated precipitation should be noticeably smaller
than those generated using precipitation based on
information from cooperative observers. However,
if the estimated CMAQ error is similar regardless of
the precipitation data estimated for the grid cells,
then there are likely other, much more significant
causes than errors in the precipitation fields
provided to CMAQ. For instance, such factors
could include errors in estimating ammonia
emissions.

4. Results

We now take a closer look at the estimates
provided by the Bayesian hierarchical model dis-
cussed in the previous section, beginning with the
winter time period. Fig. 7 shows the average
ammonium wet deposition estimated by the statis-
tical model using precipitation information from
MM5 (left panel) and the cooperative observer
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Fig. 7. Winter estimated ammonium wet deposition using (a) MM5-simulated precipitation and (b) cooperative observer precipitation.
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network (right panel). A comparison of these two
figures reveals some discrepancies, which corre-
spond largely with the discrepancies between the
MM5-simulated precipitation (Fig. 6c) and that
obtained using the cooperative observer network
(Fig. 6a). For instance, this is seen clearly along an
imaginary line between northeastern Kansas and
northeastern Illinois.

Since these estimates are made on the basis of the
Bayesian statistical model described in the previous
section, it is fairly easy to take into account the
statistical error associated with each estimate and,
by extension, associated with the estimated differ-
ences between CMAQ and the statistical estimates
portrayed in these figures. This variability can be
largely captured through the construction of 95%
credible intervals, which give the ranges within
which the statistical model predicts the ammonium
wet deposition levels fall with 95% probability.
Then, we can focus our attention on those grid cells
in which the simulated ammonium wet deposition
given by CMAQ falls outside the credible interval
given by the statistical model; these errors are
statistically significant. Henceforth, we will refer to
the differences (CMAQ-estimated) in these grid cells
as significant errors. For reference, Fig. 8 displays
the standard deviation associated with the estimated
wet deposition for each grid cell, using both MM5-
simulated (left panel) and cooperative observer
precipitation (right panel). As expected, the un-
certainty tends to be higher for grid cells at which
there are few or no NADP sites located nearby; for
example, variability is noticeably higher in the
northwest and northeast corners of the region,
where we have no observations. Fig. 9 shows
the winter time significant errors, using the
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Fig. 10. Summer estimated ammonium wet deposition using (a) MM5-simulated precipitation and (b) cooperative observer precipitation.
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MM5-simulated (left panel) and cooperative ob-
server (right panel) precipitation. (Note that non-
significant differences are not shown in these
figures.) The patterns displayed in these panels are
quite similar, even though the precipitation used in
the statistical algorithms is from different sources.
Both show a substantial overprediction of ammo-
nium wet deposition by CMAQ in the area bridging
Minnesota and Iowa and in a limited area in
southern Michigan. The areas of underprediction
are larger, consisting of much of the southwestern
portion of our focus area and portions of eastern
Wisconsin and northern Michigan. Of course,
without cooperative observers in Ontario, we
cannot determine whether the statistical models
agree about a suspected large area of underpredic-
tion there. One area in which the statistical models
disagree is northern Kentucky, where the statistical
model based on cooperative observer precipitation
suggests that CMAQ may be underpredicting
ammonium wet deposition.

Fig. 10 shows the estimated ammonium wet
deposition in the summer period using both sets of
precipitation data, while Fig. 11 displays the
standard deviations of the corresponding wet
deposition estimates. Again, as expected, many of
the differences we see can be traced back to the
differences in the precipitation sources. The most
noteworthy of these differences are probably those
found along the extreme southern border of the
focus region, and in portions of Illinois and Ohio.
Interestingly, Fig. 11a shows that for the statistical
model which makes use of MM5-simulated pre-
cipitation, variability associated with the estimates
is highest in this same area, motivating further
exploration. We examine further the grid cells in
which the CMAQ-simulated ammonium wet de-
position differs significantly from that estimated by
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the statistical model. Fig. 12 displays these sig-
nificant errors for the statistical model using
simulated precipitation and cooperative observer
information in panels (a) and (b), respectively. The
western portions of the focus region look similar in
both panels, with underprediction of ammonium
wet deposition by CMAQ. However, there are
several areas where there exists noticeable disagree-
ment. Based on the MM5-simulated precipitation,
the statistical model estimates that CMAQ is
underpredicting ammonium wet deposition in por-
tions of northern Kentucky and southern Indiana.
However, for the same region, but using precipita-
tion data from the cooperative observers, wet
deposition is overpredicted in the same area. In
addition, there are some areas in central Ohio that
are only identified as areas of CMAQ overpredic-
tion and areas of Indiana identified as areas of
underprediction by the statistical model based on
cooperative observer information. These same areas
do not appear to have significant errors based on
the statistical model using simulated precipitation.

Our examination of the significant differences
(winter in Fig. 9 and summer in Fig. 12) has so far
been largely an exercise of visual comparison, and
we now take a closer, more quantitative approach.
For each grid cell, we consider the 95% credible
interval for the estimate given by the statistical
model using the MM5-simulated precipitation and
that using precipitation recorded by the cooperative
observers. If, for a given grid cell, the credible
interval obtained based on MM5-simulated pre-
cipitation and the credible interval obtained using
the cooperative observer data do not overlap, then
we say that the estimates are significantly different
for the specified grid cell. Note that as before, we
cannot include grid cells for which we do not have
cooperative observer data, so this comparison
cannot be conducted in some portions of the focus
region. For the summer period, Fig. 13 shows grid
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cells at which the statistical estimates differ sig-
nificantly. The color assigned to each cell gives the
absolute difference between the non-overlapping
credible intervals. In addition to problematic areas
previously identified, there are also patches of
smaller, but still notable, differences in Wisconsin
and Minnesota. These areas are worthy of addi-
tional investigation to determine any role that
precipitation discrepancies may be playing in the
CMAQ simulation of wet deposition. During the
winter time period, the credible intervals for all
available grid cells overlap, so no corresponding
figure is included for this time period.
5. Discussion

Comparisons between the significant errors ob-
tained using our two sources of precipitation data
are revealing. In the winter period, the pattern of
significant errors is very similar, regardless of the
source of precipitation data. This implies that
although the precipitation data yielded by MM5
and the cooperative observer records are somewhat
different, these differences are not a significant
factor in the underprediction or overprediction of
ammonium deposition by CMAQ. Instead, we
might consider other explanations for CMAQ’s
performance in the winter. One potential issue is the
quality of the emissions data, which may be
incomplete or may contain poor estimates of
ammonium sources, especially agricultural contri-
butions. It is difficult to evaluate the emissions
inventory with our statistical algorithm, since we
have no observed emission data. However, work has
been done in this area using other statistical
techniques. See, for example, Gilliland et al. (2003).

In the summer period, the pattern of significant
errors differ based on the precipitation information
included in the statistical algorithm in a few
portions of the focus region. This implies that
CMAQ’s performance may be at least partially
explained by the MM5-simulated precipitation data.
During the summer months when convective
activity is dominant, we sometimes see a spotty
pattern of precipitation that is much harder to
model or predict. Monitors located near one
another may show differing amounts of rainfall.
Fig. 14 shows the standard deviation of precipita-
tion amounts recorded by cooperative observers
within the smoothing window for each grid cell in
the summer period. As before, grid cells with fewer
than two records are colored gray. We note that
these standard deviations are high in portions of
Ohio and Kentucky, where the patterns of signifi-
cant errors are different for the two sources of
precipitation information, but also high in portions
of Missouri and West Virginia.

In areas where rainfall amounts are spatially
inhomogeneous, there are two potential problems.
The first is that there is more error inherent in the
smoothing process, which we use to get precipita-
tion estimates for each grid cell based on the
cooperative observers’ observations and precipita-
tion information recorded by NADP monitors.
Secondly, the statistical model suffers from de-
graded performance because the ammonium wet
deposition field is changing more rapidly in some
places than in others; this violates the notion of a
stationary covariance structure (Banerjee et al.,
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2005, Chapter 5), which is inherent in our model.
However, as mentioned with regards to the winter
period, there is also a considerable amount of
uncertainty in the emission inventory, which we
cannot assess.

It is clear that there are many additional
questions to be addressed. Atmospheric transport
processes and their effects on the wet deposition of
ammonium have not been addressed in this paper.
This is a topic which requires further research.
Another approach to the research that we have
done would be to take a more limited space/time
view to the evaluation of CMAQ; such an approach
would be similar to the traditional case-study
approach used in meteorology. One could select a
limited spatial/temporal domain which possesses
precipitation and emissions characteristics that fit a
particular research objective. Data-rich regions
could then be selected in which to carry out the
research, thus putting comparisons between CMAQ
simulations and observations on firmer statistical
grounds.
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